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Abstract 
The linear one-turn map of a storage ring contains cou- 

pling information on which a coq-ection algorithm can be 
based. In principal, the one-turn matrix can be fitted from 
turn-by-turn data of beam position monitors after a kick 
was applied. However, the so obtained coupling informa- 
tion often sinks into the noise floor. The signal-to-noise 
ratio of the coupling information can be greatly enhanced 
by fitting maps for larger turn numbers N, equal to half the 
beat period. With the so obtainedN-turn map an automated 
global coupling correction is possible without the need for 
a tune change. This is demonstrated for the Relativistic 
Heavy Ion Collider where the algorithm is implemented for 
operational use at injection. 

1 INTRODUCTION 
Linear coupling [ 1-31 can make it impossible to set tunes 

to values close to the coupling resonance Qx = Qy. These 
tunes are desirable since the resonance density in this area 
is low. A widely used method to measure global linear cou- 
pling, is to move the tunes until the minimum tune separa- 
tion AQmin = IQx - Qylmin is reached [l]. A coupling 
correction is then performed by scanning skew quadrupole 
corrector settings to minimize AQmin. This approach is 
slow, can lead to beam losses, and cannot be practically ap- 
plied during an energy ramp. The decoupling method pre- 
sented here overcomes all these shortcomings. It is based 
on N-turn maps, fitted from turn-by-turn data after a trans- 
verse kick was applied. Based on fitted N-turn maps the 
minimum tune approach AQmin and skew corrector set- 
tings to minimize this quantity can be obtained without a 
tune change. The algorithm lends itself to full automation 
and allows a coupling correction within seconds. An im- 
plementation at RHIC is shown. 

2 MATRIX DESCRIPTION 
We denote by z' = (z, d ,  y, Y ' ) ~  the 4-vector with the 

positions and slopes at a certain observation point in the 
ring (see Fig. 1). The linear one-turn map M transforms 
the 4-vector 9 at turn i into the 4-vector at turn i + 1 

(1) 
The 4 x 4 matrix M can be written in terms of 2 x 2 matrices 
via 2+1 = M2.  

M = ( t  :). as 
(2) 

The machine is said to be globally decoupled if B = 0, 
which implies C = 0. If the linear coupling is caused 
by a number of small sources, rather than a few large ones, 
global decoupling at any observation point will usually lead 
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Figure 1: Observation point at the beginning of an arc and 
beam trajectory in the arc. 

to a machine that is almost globally decoupled at any other 
observation point [3]. 

We denote by (&A, Q D )  the eigentunes of the map (2), 
and also use the quantities PA,D = ~ @ A , D .  The eigen- 
tunes can be determined with good precision from turn-by- 
turn data by filtering, Fourier transformation, and interpo- 
lation [4]. The minimum tune approach is then [3] 

dde t  IC + B/ 
n(sin P A  + sin p ~ )  (3) 

where = -SBTS, and S is the symplectic form. 
Global decoupling amounts to manipulations that result in 
det IC + = 0. Note that the sign of det IC + BI is 
negative on sum resonances and positive on difference res- 
onances [3]. 

For weak coupling, the largest elements of the matrices 
B and C can be more than an order of magnitude smaller 
than those of the matrices A and D. We now consider a N- 
turn map and chose the turn number N such that the values 
of the sub-matrices BN and C N  in the multi-turn map 

AQmin = 

(4) 
are maximized. With coupled motion energy is exchanged 
between the transverse planes with the beat frequency. To 
observe the maximum effect of the energy transfer from 
one plane to the other, one has to wait for half the beat 
period. This can be seen in Fig. 2 (a) and (b). The optimum 
N is thus approximately 

1 
(5) 

n- - - N25 ~ I Q A  - Qol IPA -POI '  
The coupling information can also be obtained from the N- 
turn map since [5] 



AQmin can then be computed with Eq. (3). Based on the 
obtained value for C + B, skew correctors can be set so 
that det IC + = 0 when the correctors are included. 
This will be shown in Sec. 4. 

3 CONSTRUCTION OF A N-TURN MAP 
We assume that m consecutive turns of a 4-vector z' = 

(x, x', y, Y ' ) ~  were fitted from turn-by-turn orbit data after 
a transverse kick. For weak coupling this can be done in a 
robust way, using a number of beam position monitors in 
an arc [5]. For the N-turn map one has 

To fit the matrix elements of MN the function 
,$+N = M N $ .  (7) 

m-N 4 1 4 \, 
(,*+N - M t z ; )  (8) 

j=1 
x2(MN)= 

k=l i=l 

is minimized. Introducing the two 4 x 4 matrices Sa and 
sb with elements 

m-N m-N 

lC=l k=l 

the minimization of x2(MN) leads to the direct solution 

In an implementation the condition det Sb  # 0 needs to 
be checked, and the direct solution of Eq. (10) may not the 
best way to solve the problem numerically [6]. 

MN = (10) 

4 LINEAR COUPLING CORRECTION 
We assume that the eigentunes QA,D were obtained from 

a Fourier transform of turn-by-turn data, and the matrix 

from a N-turn map with Eq. (6). 
For a correction algorithm we work in a coordinate sys- 

tem, in which the linear motion is represented by circles in 
phase space. The transformation into the new coordinate 

(12) 
system z'= %z' 
is provided by the matrix 

K = C + B ,  (1 1) 

I 

and similar for By [3]. The matrix % is computed at the 
observation point. The matrix K can be written as 

(14) 
We denote by pi the horizontal phase advance from the 
observation point to the skew quadrupole i, and use 

(15) ? 

In the new coordinate system we have for a number of weak 
skew quadrupoles [3] 

K = %yC%gl + %xB%Z?,l. 

S: = sinp: 
S: = sin(px - pk), C; = cos(p, - pi ) .  

, ci =cos&, 

and a similar expression for B. The strength ki is the in- 
verse focal length fi of skew quadrupole i. Assume a cor- 
rector family has the same skew corrector strength kl  in all 
correctors and results in 

where the elements in C 1  and B1 were divided by kl .  For a 
global coupling correction we want to minimize the quan- 

(18) 
tity 

- 
K1 = k&+ B 1 ) .  (17) 

x(k1) = det IK + klk'). 
It follows A1 kl  = - 

2 det K1 
with 

A1 = K1&, - K17,K;1 + R 3 2 2  - K,, - 1  K 21. (20) 
In principal two correctors or families are sufficient to cor- 
rect linear coupling globally (unless their matrices K1 and 
K2 are linear dependent). After the first strength kl  has 
been found, the second strength k2 can be found with 
Eqs. (19) and (20), by replacing kl  by k2, K1 by K2, and 

5 APPLICATION AT RHIC 
The above described algorithm for global linear coupling 

correction has been implemented within the RHIC injec- 
tion optimization application. After beam is injected, turn- 
by-turn data are automatically acquired from 12 beam po- 
sition monitors in the horizontal and 12 monitors in the 
vertical plane. 1024 turns are recorded in each of the 
beam position monitors while the beam exhibits injection 
oscillations. The application has access to an online ma- 
chine optics model, and can read and set skew corrector 
strengths [7]. 

In a test the AQmin computed from the N-turn maps 
was compared with the AQmin obtained by bringing the 
tunes together [5]. Good agreement could be demonstrated 
over a AQ range sufficiently large to cover operation (both 
RHIC tunes are kept between 0.2 and 0.25). 

As an example for a coupling measurement and correc- 
tion we show the first test of the algorithm in operation, 
performed in the RHIC Blue ring with deuteron beam. In 
Fig. 2 (a) and (b) the beam oscillation in the horizontal and 
vertical plane following the injection are shown. The beat- 
ing is clearly visible. 

From the measured eigentunes, the optimum turn num- 
ber N is determined with Eq. (5). We get N = 67 and the 
fitted N-turn map is 

K by K + klK1. 

1 (21) 

-0.01 2.75 -2.28 -13.18 
-0.02 0.49 -0.17 -1.40 

67 - (  0.02 -1.31 -0.04 -0.23 
Mbefore- -1.02 22.29 0.13 1.84 * 

from which AQmin = 0.0064 is obtained. 
RHIC has three families for global decoupling, due to 

the six-fold symmetry of the machine. Two of those fami- 
lies are selected to minimize the coupling. The predicted 
AQmin after correction is 0.0003 (see Fig. 2 (a)). A 
nonzero prediction is a sign of measurement errors in the 
N-turn map, or a mismatch between the optics model and 
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the machine. The correction can be implemented by press- 
ing a single button in the application. 

The result of the coupling correction is shown in 
Figs. 2 (c) and (d). The recoherence after 650 turns is due 
to synchrotron motion and nonzero chromaticity. 650 turns 
are a synchrotron period. After correction, we have 

0.01 -0.40 0.06 t:::) (22) 

and AQmin is reduced to 0.0023. Note the reduction in 
the matrix elements  MI^ and M32. The AQmin reached 
by the correction was confirmed by a tune measurement af- 
ter moving the tunes together. In operation it was found 
that the coupling correction cannot significantly improved 
beyond AQmin = 0.002. This is consistent with the 
AQmin = 0.0011 predicted for the next correction. 

6 SUMMARY 
A method for global coupling measurement and correc- 

tion is presented that is based on N-turn maps fitted from 
turn-by-turn beam position data. N is chosen so as to max- 
imize the signal-to-noise ratio of the coupling information. 
By using more than two monitors per plane the robustness 
is increased and the effect of random errors in beam po- 
sition monitors is ameliorated. No tune change is needed 
for either the measurement or the correction. The method 
is implemented for operation as part of the injection opti- 
mization application at RHIC. It allows a global coupling 
correction within seconds after the turn-by-turn data are ac- 
quired. The method may be used in situations other than 
injection, when turn-by-turn data of free beam oscillations 
can be acquired. 
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Figure 2: Turn-by-turn signals before and after a coupling 
correction at injection. In part (a) and (b) the horizontal 
and vertical injection oscillations are shown before a cou- 
pling correction. Part (a) also shows the computed AQmin 
and the predicted AQmin after a coupling correction. Parts 
(c) and (d) show the situation after the computed corrector 
values were applied. 


